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ABSTRACT 

Satellite-derived bathymetry is a method used to overcome the limitation of survey vessels when acquiring 

depth data in shallow waters of less than 2 m, especially depths of 0-2 m. Currently, the SDB method has 

been widely used to provide shallow water bathymetric data. Besides this method can provide wide coverage 
of depth data, the availability of multitemporal and multiresolution images allows the method to be categorized 

as a relatively low-cost method compared to conventional surveys. This study compares SDB methods in 
deriving depth data using various machine learning algorithms using Sentinel-2A images in Kepulauan Seribu, 

Indonesia. Three machine learning algorithms were compared, namely K-Nearest Neighbors (KNN), Multiple 

Linear Regression (MLR), and Random Forest (RF), to observe the best-performing method. SDB was applied 
by combining echo-sounding measurements and the reflectance of blue, green, red, and near-infrared bands 

of Sentinel 2A. Our research revealed that RF provided the best accuracy compared to MLR and KNN. However, 
the resulted depth range could not cover very shallow water depth at 0 m. Only the MLR could detect zero 

depth, but it has the worst RMSE value. KNN provided a feasible result with slightly higher RMSE compared to 
RF, nonetheless, it took longer runtime for about 30% higher than RF. 

Keywords: bathymetry, k-nearest neighbors, machine learning, multiple linear regression, random forest, 

satellite derived bathymetry 

ABSTRAK 

Satellite derived bathymetry adalah suatu metode yang dapat digunakan untuk mengatasi kelemahan 
kapal survey ketika mengakuisisi data kedalaman pada perairan dangkal yang kurang dari 2 m, khusus nya 
kedalaman 0-2 m. Saat ini, metode SDB sudah banyak dimanfaatkan untuk penyediaan data batimetri perairan 
dangkal. Selain metode ini mampu menghasilkan cakupan data kedalaman yang luas, ketersediaan citra 
multitemporal dan multiresolusi memungkinkan metode ini dikategorikan sebagai metode yang relatif murah 
dibandingkan dengan survey konvensional. Studi ini fokus membandingkan metode SDB dalam menurunkan 
data kedalaman dengan menggunakan berbagai algoritma pemelajaran mesin dengan menggunakan citra 
Sentinel 2A di Kepulauan Seribu, Indonesia. Tiga algoritma pemelajaran mesin dibandingkan yaitu K-Nearest 
Neighbors (KNN), Multiple Linear Regression (MLR), dan Random Forest (RF) untuk mengamati metode 
dengan performa terbaik. SDB diterapkan dengan menggabungkan hasil pengukuran echo-sounding dan nlai 
reflektan band biru, hijau, merah, dan inframerah dekat citra Sentinel 2A. Penelitian ini mengungkapkan bahwa 
RF memberikan akurasi terbaik dibandingkan dengan MLR dan KNN, namun kisaran kedalaman yang dihasilkan 
tidak dapat mencakup kedalaman air yang sangat dangkal 0 m. Hanya MLR yang dapat mendeteksi kedalaman 
0 m, tetapi algoritma tersebut memiliki nilai RMSE terburuk. Faktanya, KNN memberikan hasil yang cukup 
layak dengan RMSE yang sedikit lebih tinggi dibandingkan dengan RF, namun membutuhkan waktu proses 
yang lebih lama sekitar 30% dari pada RF. 

 
Kata kunci:  batimetri, k-nearest neighbors, pembelajaran mesin, multiple linear regression, random forest 

satellite derived bathymetry 
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INTRODUCTION 

Bathymetric surveying by conventional survey 

vessels is exceedingly complex and dangerous in 
shallow waters (Caballero & Stumpf, 2020). 

Moreover, this technique is time-consuming, 
demanding, and expensive (Duplančić Leder, Leder, 

& Peroš, 2019). However, bathymetric data in 

shallow waters is required to create a precise 
coastal Digital Elevation Model (DEM). 

An alternative method to extract bathymetric 
data in shallow waters is using Satellite Derived 

Bathymetry (SDB). The SDB method uses satellite 
imagery for depth data extraction (Marks, 2018). 

However, depth extraction by using SDB generally 

works well in very shallow water areas with clear 
waters (Caballero & Stumpf, 2020; Dewi et al., 

2019). This study explored the SDB algorithm, 
which can produce high-precision bathymetric data.  

There are two approaches in the SDB, namely 

analytical and empirical approaches. Empirical 
approach is based on the relationship between 

image pixel values and in-situ depth data 
(Hamylton, Hedley, & Beaman, 2015; Rossi, 

Mammi, & Pelliccia, 2020). While the analytical 
approach is based on the principle of light 

propagation in water that requires a number of 

optical properties of water as input (Gao, 2009).  
As an empirical approach, the satellite-derived 

bathymetry requires in-situ data as training data, 
thus water depth measurement is needed. On the 

other hand, a bathymetric survey using a regular 

survey vessel has limitations in acquiring data in 
shallow water due to safety reasons (Caballero & 

Stumpf, 2020). Fortunately, unmanned survey 
vessels equipped with Single Beam Echosounder 

(SBES) or Multi Beam Echosounder (MBES) are 

increasingly available as technology advances. This 
technological advancement is known as Unmanned 

Surface Vehicle (USV), as in Figure 1. 

 
Figure 1. Unmanned surface vehicle is equipped with 

single beam echosounder. 

Based on our experience in the field, several 

advantages of using USV exist. First, the vessel has 
lightweight and small size, so this can prevent the 

vessel from running aground. However, if it does 

run aground, it can always be lifted. Second, it is 

remotely operable; it can acquire data in hardly 
accessible waters. In this case, by using USV, water 

depth measurement in shallow water areas is 
expected to be much easier. Therefore, using an 

empirical approach can support deriving water 

depth in shallow water areas.  
Machine Learning (ML) is considered a useful 

approach to developing a general water depth 
estimation (Sagawa et al., 2019). Furthermore, 

Sagawa et al. (2019) mentioned that ML has a 

broad use for predicting any data if one has data as 
ground truth and its features to train this ML model, 

including predicting or deriving water depth. 
Deriving water depth needs water depth samples as 

ground truth and features correspond to the water 
depth value. In this case, the selected ML method 

will fit the ground truth data to the features 

(Sagawa et al., 2019). By using the ML, a rapid 
survey with only a few transects can be conducted, 

thus, this can reduce the budget and time needed 
for field survey (Tonion et al., 2020).  

This research focused on comparing three 

machine learning algorithms: KNN, MLR, and RF. 
The methods were tested using Sentinel 2A imagery 

in Kepulauan Seribu, Indonesia. Comparison 
between three SDB techniques as well as the 

accuracy assessment using bathymetric data, were 
conducted in order to reveal approaches that have 

the best performance. Thus, the objectives of this 

study are summarized as follows: to determine the 
best SDB model; and to compare the performance 

of KNN, MLR, and RF for their SDB predictions 
accuracies and runtime. 

METHODS 

Applying the SDB in this research required in-

situ data (i.e., depth sample). The depth sample 
was acquired in Kepulauan Seribu, Indonesia 

(Figure 2) using USV equipped with SBES. Figure 

2 shows the extent of the research area of interest 
(AOI). However, the research scope only covers the 

shallow water areas inside the AOI that are hardly 
accessible by a conventional survey vessel. This 

research workflow is shown in Figure 3. 

The depth data acquisition was conducted over 
ten days, from June 27th until July 06th, 2021. The 

data was acquired in shallow water areas inside the 
AOI (see Figure 4). The depth data was then 

corrected using daily local tide data and tied to a 
vertical reference (Mean Sea Level). To ensure the 

quality of the USV surveyed depth data, we 

calculated its maximum allowable Total Vertical 
Uncertainty (TVU) using an equation provided by 

the International Hydrographic Organization (IHO) 
following their Standards for Hydrographic Surveys, 

S-44 edition 6.0.0. The TVU is calculated as follows: 

 

𝑻𝑽𝑼𝒎𝒂𝒙 =  √𝒂𝟐 + (𝒃 × 𝒅)𝟐 ............................... (1) 
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where: 

𝑻𝑽𝑼𝒎𝒂𝒙 = maximum allowable TVU 

𝒂 = represents that portion of the uncertainty that 

does not vary with the depth 
𝒃  = a coefficient representing a portion of the 

uncertainty that varies with the depth 
𝒅 = depth 

 
Figure 2. Research area of interest in Kepulauan 

Seribu, Indonesia shown by Sentinel 2A 
imagery as a background. 

Following Order 2 and Order 1b requirements 
of the IHO Standard for Hydrographic Surveys, the 

TVU for Order 2 has a 100% confidence level, and 
the TVU for Order 1b has 95.12% confidence level. 

A confidence level over 95% means the depth data 

quality passes the standards for the safety of 
navigation hydrographic surveys for Order 2 and 

Order 1b. Order 2 is areas where a general 
description of the sea floor is considered adequate. 

In contrast, Order 1b is areas where under keel 

clearance is not considered to be an issue for the 
type of surface shipping expected to transit the area  

(International Hydrographic Organization, 2020). 
Another essential data for Satellite Derived 

Bathymetry is satellite imagery. The selected 
satellite imagery for this study was Sentinel 2A 

because it is a multi-spectral imagery that is free to 

use and has up to 10-m spatial resolution and a 100 
km x 100 km wide exposure scene (Delwart, 2015). 

Fortunately, one scene of Sentinel 2A can cover all 
the areas of interest. 

 
Figure 3. General framework of the research. 

A particular Sentinel 2A acquired on August 

12th, 2021, was selected because it was cloud-free, 

especially in shallow water areas, and it has the 
closest acquisition time with the depth sample data 

acquisition. The selected imagery then goes 
through an atmospheric correction, band stacking, 

and cropping. The Dark Object Subtraction 1 

(DOS1) was applied for the atmospheric correction. 
The DOS1 correction was executed using the Semi-

Automatic Classification Plugin -a Python plugin- for 
the QGIS software developed to facilitate people 

whose main field is not strictly remote sensing but 
could benefit from remote sensing analysis 

(Congedo, 2021). 

Sentinel 2A has thirteen bands, however, only 
four bands (i.e., B2, B3, B4, and B8) were used for 

this research because they have a 10-meter spatial 
resolution. Those four bands were stacked into one 

multiple-band image file and cropped based on the 

research area of interest. Now that we had the 
depth sample data as ground truth and four bands 

of Sentinel 2A imagery as features, we proceeded 
to derive water depth using three machine learning 

algorithms. In this research, we used the Scikit-

Learn library because it uses high-level language 
that is easy to use and contains many ML algorithms 

(Pedregosa et al., 2011). 
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Figure 4. A closer look on some of the depth samples 

in shallow water areas (using Bing Imagery 
as the background) 

To predict specific outcomes using machine 

learning from the available data, we need to 
differentiate between features and labels of the 

data. In the case of deriving depth using satellite 
imagery, the label is the depth data itself, and the 

feature is its attribute represented by raster values 

of the imagery. With ML, we analyzed the 
correlation between features and labels. 

At this point, we had depth samples and 
preprocessed imagery. Afterward, raster values of 

the imagery were extracted and linked to depth 
values according to its coordinate location, known 

as point sampling. Before using any ML methods, 

depth samples and their corresponding raster 
values were filtered, so we only used depth sample 

data of 15 m or less. This was because in this 
research, the target area was limited to very shallow 

water, and the limitation of this sample data was to 

reduce the data processing load. In order to apply 
any of these ML methods, we split the filtered depth 

samples into training and testing datasets. The 
training dataset was used for training an ML 

method, and the testing dataset was used for 
measuring the accuracy of the prediction of the 

results. The depth samples and their corresponding 

raster values were split into training and testing 
datasets by 75% (train data) to 25% (test data) of 

all samples randomly. 
Three ML methods were compared in this 

study, namely K-Nearest Neighbors (KNN), Multiple 

Linear Regression (MLR), and Random Forest (RF). 

The motivation of the method comparison was to 
reveal which method performs better. Previous 

studies mentioned that RF has the best performance 
(Sagawa et al., 2019) while KNN for SDB was rarely 

used. So, it is important to find out the performance 

of KNN against RF and MLR. The KNN method is 
based on labels of the K-nearest patterns in 

dataspace (Kramer, 2013). It derives depth values 
by comparing the training dataset and its 

corresponding features, finding K-numbers of its 

closest neighbors, and then predicting the depth 
from here. MLR extends simple linear regression to 

include multiple explanatory variables (Tranmer, 
Murphy, Elliot, & Pampaka, 2020).  MLR method 

derives depth values by solving linear regression 
using multiple features and the defined training 

samples. RF is a combination of tree predictors such 

that each tree depends on the values of a random 
vector sampled independently with the same 

distribution for all trees in the forest (Breiman, 
2001) 

We set certain parameters for each method 

beforehand and left the rest using a default value 
from the Scikit-Learn library. In KNN, the parameter 

is weight. In MLR, we used default values for its 
parameter because there is not much to adjust. 

Moreover, in RF, we only set the number of trees 
parameter. For this research, the number of trees 

equal to 300 was selected since we obtained a good 

result after experimenting with several tree 
parameters in the pre-analysis stage. All the 

selected parameters are shown in Table 1. 

Table 1. Selected parameter values 

ML Method Parameter Values 

K-Nearest 
Neighbors 

weight = distance 

Multiple Linear 
Regression 

All default 

Random Forest Number of trees = 300 

 

Using the training dataset, the ML method was 
fitted according to its adjusted parameters for each 

method. When the model fitting is completed, 

predicting depth using the model becomes possible. 
The fitted models were used in two processes, 

deriving depth in every pixel grid of the processed 
Sentinel 2A imagery (i.e., cropped, stacked, then 

cropped) and deriving depth in the location of the 

split test dataset. The former was to derive the 
depth of the shallow water areas, while the latter 

was to assess the accuracy of the derived depth by 
calculating the root mean squared error (RMSE) 

based on different values of the real depth and the 
predicted depth of the test dataset.. 
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As the depth samples were filtered, only 15-m 

of the samples would go through the next 
processing step. The derived depth as a result of ML 

processes was also filtered. In other words, the 0–
15-meter filter was applied before and after the 

machine learning process. The logic behind this was 

that if the input data contained only 0–15-m depth, 
then the output would also contain only 0–15-m 

data. 
The predicted depth then went through the 

median filtering process. The median filter is a 

nonlinear signal processing to replace the noisy 
value of an image with the median value of its 

neighbors (Zhu & Huang, 2012). The median filter 
is useful for removing salt and pepper noise on an 

image. An image filter usually has a square shape 
with the size using pixel units and odd numbers 

(e.g., 3x3, 5x5, 7x7). This filter size means a 

boundary for which of its neighbors would be 
included in the median calculation. As the median 

filter size increases, the filtered image becomes 
smoother or less sharp. For this reason, using a 3x3 

size median filter on the derived depth should be 

sufficient since using a larger filter would eliminate 
information detail of the images. 

All the ML processes in this study were 
conducted using Scikit-Learn and other Python-

based libraries and all their dependencies, such as 
NumPy, Pandas, SciPy, Rasterio, and Geopandas. 

NumPy is useful for manipulating data in an array 

form (Harris et al., 2020). Pandas is a Python library 
to process tabular data (McKinney, 2010). SciPy 

provides fundamental building blocks for solving 
scientific problems (Virtanen et al., 2020) and in this 

case is the median filter. Rasterio and Geopandas 

are tools to process raster and vector data 
containing geographical information (Gillies, 2013; 

Jordahl et al., 2020). To make the machine learning 
processes easier to execute repeatedly, we used a 

Python-based program based on Satellite Derived 

Bathymetry (SDB) GUI (Harrys, 2022). 

RESULTS AND DISCUSSIONS 

There were over 66,032 depth sample points 

from the bathymetric survey using USV. By taking 

only 0–15-m of depth data, the used samples were 
60,188 points or about 91.15% of all depth 

samples. The number of depth samples of 3 m is 
45,699 or 75.927% of filtered depth samples (see 

Table 2).  
 

Table 2. Filtered depth quantity by depth range 

Depth Range (m) 
Quantity 

Amount Percentage  

0 ≤ depth ≤ 3 45,699 75.9 

3 < depth ≤ 6 7,513 12.5 

6 < depth ≤ 9 2,545 4.2 

9 < depth ≤ 12 2,156 3.5 

12 < depth ≤ 15 2,275 3.8 

Table 3. RMSE and runtime of three machine 
learning methods 

ML Method RMSE (m) Runtime (H:M:S) 

KNN 0.47 0:01:01.324 

MLR 1.79 0:00:04.202 

RF 0.46 0:00:39.465 

Table 3 shows RMSE in meters and runtime in 
hours, minutes, and seconds of each ML method 

mentioned in the previous section. According to 
Table 3, the RF method has the lowest RMSE, 

whereas MLR has the highest RMSE. Based on the 
results of RMSE only, RF has the best result because 

the lower the RMSE, the better the data quality. 

Even though the MLR has the worst RMSE value, it 
has the fastest runtime, thanks to the simpler 

algorithm. The runtime may vary depending on the 
processing power of the computing devices. 

 
Figure 5. Scatter plot of the test depth sample 

against predicted depth using KNN. 

The RMSE values in Table 3 were calculated 

using the test dataset, and then the depth was 
predicted using the same trained model already 

used in the previous ML process (i.e., model fitting). 
The reason for using a test dataset to validate the 

predicted depth is to create independent data as a 

control. 
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Figure 6. Scatter plot of test depth sample against 

predicted depth using MLR 

Using the predicted depth from the test dataset 

makes it easier to visualize the relation between the 
predicted depth and the test dataset (see Figure 5, 

Figure 6, and Figure 7). Ideally, the test depth 
samples should equal the predicted depths or y = x 

(red line in Figure 5, Figure 6, and Figure 7), but 
that was hardly possible. Thus, the closer a point to 

the y = x line means the closer it is to the true value. 

Therefore, by looking into the scatter plots, KNN 
and RF have better results than MLR. 

Figure 8 and Figure 9 shows the derived depth as 
DEM that was calculated using KNN, MLR, and RF 

after they were filtered using the median filter. From 

Figure 9b, the DEM as the SDB results from MLR 
seems to have plenty of null data in the shallow 

waters. This might be caused by the derived depth 
using MLR was beyond the range of 0 to 15 m 

window. In contrast, the DEM products from KNN 

and RF methods differ greatly in shallow water 

areas.  
Figure 10 shows a cross-section profile of the 

predicted depth using three methods in selected 
locations in the research area. From Figure 10, the 

profile of KNN and RF models have a good 

agreement, shown by the red and blue lines fitting 
well in many locations. Meanwhile, the MLR model 

represented by the green line shifted from the other 
two models (KNN and RF) in many locations, 

especially in the deeper area. Moreover, the MLR 

model has many spikes along the cross profile in 
Figure 10. This condition was supported by the 

RMSE values presented in Table 3, at which the MLR 
yielded the highest RMSE value (1.79 m) compared 

to RF with 0.46 m and KNN with 0.47 m. 

 
Figure 7. Scatter plot of test depth sample against 

predicted depth using RF 

The predicted depth outside the shallow water 
areas appears to have values within the range of 10 

to 15 m depth, while the typical depth outside the 
shallow water areas around Kepulauan Seribu, 

Indonesia, is about 20 to 50 m depth. There are two 

reasons why this could happen. First, the training 
dataset only provided 0 to 15 m depth. Second, 

deriving depth using satellite could only be detected 
in shallow water areas with a maximum depth of 

approximately 20 to 30 m. 
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(a)    (b)    (c) 
Figure 8. Overall view of the predicted depths as DEM that was calculated using (a) KNN, (b) MLR, and (c) RF 

  
(a)        (b) 

  
(c)       (d) 

Figure 9. A visualization of the predicted depth as DEM that was calculated using (a) KNN, (b) MLR, and (c) RF. While 
(d) is satellite image in the similar location as the DEM clip (image from world imagery in Global Mapper 
software) 

 

Figure 11 shows three cross-section profiles 

of the predicted depth from different prediction 

methods outside a shallow water area. All three 
methods show an almost flat seabed with a few 

spikes. While a flat seabed is possible, the fact that 
the real depth could be 20 to 50 m indicates that 

the predicted depth outside the shallow waters was 
inaccurate. Therefore, most of the predicted data 

outside the shallow water areas were removed from 

the results. However, some derived depths close to 

the shallow water areas might be accurate because 

there were slopes that go from shallow to deeper 
waters. Unfortunately, we could not determine the 

boundary of which an accurately derived depth 
close to the shallow water areas except using 

conventional bathymetric survey data to validate 
the derived depth. 
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Figure 10. The cross-section profile of depth data of the three ML methods in shallow water areas. Y axis shows depth 

in m and X axis shows the profile line in m 

 
Figure 11. The cross-section profile of depth data of the three ML methods that spans from shallow water area to 

deeper area. Y axis shows depth in m and X axis shows the profile line in m
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Table 4. The maximum and minimum values of the 
predicted depth from three ML algorithms 

ML Method 
Max. Value 

(m) 
Min. Value 

(m) 
Range 
(m) 

KNN -0.34 -14.88 14.54 

MLR 0 -14.83 14.83 

RF -0.51 -14.79 14.28 

 
The obtained depth prediction using the three 

machine learning methods has a different range 
Table 4). The MLR has the widest range of three 

methods, followed by KNN and RF. The MLR 

predicted that the depth’s range would be wider if 
the derived depth were not filtered out to 0–15-m 

depth.  

CONCLUSION 

Conventional survey vessels have limitations in 
acquiring depth data in shallow water areas. Thus, 

research is needed to find an alternative way of 
obtaining the depth data by using the SDB to fill in 

the gap of depth data in the shallow water area. The 
results obtained by this research with RMSE values 

less than 0.5 m were promising. Using the empirical 

approach to derive the depth, USV as a platform 
was used to acquire the depth samples in the 

shallow water areas to train three ML methods. The 
depth samples have a 100% confidence level in 

Order 2 and 95.12% confidence level in Order 1b. 

That means the depth samples have passed the 
standard in both orders. 

The depth prediction was carried out using 
45,141 points of the training data set, or 75% of 

60,188 points, and the rest of the depth sample 

data were used as the test dataset (15,047). 
Considering the RMSE values, the derived depth 

using the RF method had the best quality, but its 
range did not cover to zero depth with the provided 

training dataset. Only the MLR method provided the 
derived depth up to zero depth, however, it has the 

worst RMSE, and some of its derived depth has no 

data since some locations were outside of 0–15-m 
depth. On the other hand, KNN has a good balance. 

It obtained a good RMSE value (which was only 1.3 
cm higher than RF) and covered a more depth range 

than RF. The downside compared to the RF method 

was it took about 30% longer runtime. 
Unless the depth filter after the depth 

prediction was used, the only usable derived depths 
were from KNN and RF methods. From these two, 

RF-derived depth had a better RMSE value (lower 
than KNN), while KNN was better in the case of the 

derived depth range.  

Nevertheless, these results could be different if 
some conditions (train and test data, ratio 

percentage, and depth filter value) and some 

parameters (each method parameter value) were 

changed. Strictly speaking, the SBB results are 
influenced by many factors, such as input data and 

parameters when performing SDB, atmospheric 
conditions, and water quality. In addition, this 

method of deriving depth using ML would not be 

effective if there are obstacles such as lands or 
objects above sea level. Therefore, land masking is 

necessary because any depth data on land is 
considered false data. 
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